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A real fluid is contained between two horizontal infinite disks which rotate 
about a common vertical axis with the same angular velocity. On the upper 
disk there is an axisymmetric non-uniform temperature distribution with a 
minimum at the point of intersection of the disk and the axis of rotation. The 
lower disk is insulated. It is assumed that inertial accelerations are negligible 
in comparison with Coriolis accelerations and that viscous effects are confined 
to Ekman layers at  the disks. Outside the Ekman layers, therefore, since the 
motion is axisymmetric, the buoyancy forces, by the geostrophic approximation, 
drive only an azimuthal component of the velocity field which cannot alter 
the temperature field. Thus heat is convected only by the secondary circulation 
which is driven by the viscous forces of the Ekman layers. It is possible then 
for the secondary flow to be so small that heat is transferred by conduction 
processes. 

This paper analyses the conditions necessary for either conduction or convec- 
tion processes to predominate and the structure of the velocity and temperature 
fields in these different situations. In  addition the separate effectsof a temperature 
maximum on the upper disk and of replacing the upper disk by a stress-free 
surface are considered. 

1. Introduction 
One of the most familiar examples of natural convection occurs when a 

point source of heat is applied at  the bottom of a closed vessel which contains 
fluid a t  rest, or when a local cold source is applied at  the top. The circulation in 
a vertical plane takes place even if the density differences which are produced 
are very small, since no hydrostatic pressure distribution can balance the conse- 
quent horizontal variation of the buoyancy forces. Normally, heat is convected 
by the moving particles of fluid: heat conduction and viscous effects are signifi- 
cant only in regions close to the fluid boundaries, 

But in a rotating fluid the effects of density variations in a horizontal plane 
can be markedly different. For example, to an observer in a system which rotates 
about a vertical axis it seems that fluid is driven horizontally both parallel and 
perpendicular to any horizontal pressure gradient. If the temperature differences 
are not too large, then the ratio of the inertia to the Coriolis accelerations, the 
Rossby number, is small and this perpendicular component of the motion pre- 
dominates. Thus, in contrast to the situation described above, the primary 
effect of density variations in a horizontal plane is not to produce a vertical 
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circulation but a horizonal flow perpendicular to the gradient of the density. 
In  particular, if all quantities are symmetric about the axis of rotation, this 
geostrophic flow is the component of velocity round that axis and thus cannot 
alter the temperature field by convective processes. Heat is effectively convected, 
therefore, only by the circulation in an axial plane, and this flow may be in- 
hibited to such an extent by the geostrophic velocity that conduction pro- 
cesses predominate everywhere. 

Robinson (1959) discussed an example of this type of flow in a theoretical 
investigation of the rotating annulus experiments of Hide (1958) and Fultz 
et al. (1959). A real fluid was contained in a horizontal annulus of square cross- 
section which rotated about its vertical axis. The inner and outer sides of the 
annulus were held at  different constant temperatures, and the top and bottom 
were insulated. He investigated the axisymmetric ri?gime which was observed 
in the experiments, and which was believed to be geostrophic, and found that 
for a particular range of the governing parameters the temperature distribution 
was in fact determined predominantly by conduction. This temperature field 
produced a geostrophic flow round the annulus, and the circulation in an axial 
plane was confined to boundary Iayers close to all four sides. 

In this paper axisymmetric convection in a rotating fluid is examined in its 
simplest form, namely when the fluid is contained between two infinite hori- 
zontal disks which rotate about a vertical axis with the same angular velocity. 
The heat source is supplied on the upper disk in the form of an axisymmetric 
temperature distribution which has a minimum at the axis of rotation, and 
the bottom disk is insulated. We shall investigate what conditions are required, 
in addition to a small Rossby number, for the two fundamentally different 
methods of heat transfer, conduction and convection, to predominate, and what 
the corresponding structures of the velocity and temperature fields are. Although 
not directly related to the experiments mentioned above, for the heat sources 
are applied on different boundaries, it will become clear that this situation does 
describe to a considerable extent the axisymmetric geostrophic ri?gime which was 
observed. 

Von Kbmhn (1921) introduced a similarity solution for the’ flow induced in a 
homogeneous semi-infinite fluid by an infinite rotating disk, and this was general- 
ized by Batchelor (1951) for the flow between two parallel infinite disks which 
rotate about a common axis with different speeds. The remarkable property of 
the solution is that all the terms which are normally neglected in the boundary- 
layer approximations vanish identically from the Navier-Stokes equations. 
If the temperature distribution in our model is chosen to be of an appro- 
priate form, then the similarity profiles of these velocity fields hold, and the 
problem reduces to the solution of a set of non-linear ordinary differential 
equations. 

2. The equations of motion 
Consider a viscous conducting fluid contained between two infinite horizontal 

disks which rotate in a constant gravitational field about a common vertical 
axis with angular velocity Q. The disks are a distance d apart. An axially sym- 
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metric temperature distribution which increases radially from the axis of 
rotation is imposed on the upper disk, and the lower disk is thermally insulated. 
The point of intersection of the axis of rotation and the upper disk we shall call 
the pole. 

Let a cylindrical polar co-ordinate system ( r ,  8, z )  be fixed in the lower disk 
with the origin situated at  the point of intersection of that disk and the axis of 
rotation, and with the z-axis pointing vertically upwards. The fluid thus lies 
between z = 0 and z = d.  

Since the density changes by only a small amount from the density po at 
the pole we assume the Boussinesq approximation: namely 

P = P o 0  - a(T - To)}, 

where To and T are the temperatures at which the density is po and p respectively, 
and the coefficient of thermal expansion a is taken to be a negligibly small con- 
stant except when multiplied by gravity. This means that in the momentum 
equations density variations appear only as variations in buoyancy forces. It 
also implies that the continuity equation reduces to 

aupr + ulr + awpz = 0. (2.1) 

We rewrite the pressure P in the fluid as P = p'+p*, where ap*laz = -gpo. 
The quantity p' is thus the deviation from the hydrostatic pressure of a fluid 
with uniform density po. We assume that viscosity and thermal conductivity 
are constant. Then, with respect to the rotating co-ordinate frame of reference, 
the Navier-Stokes equations for steady laminar flow are 

( u . V ) u +  2S2 x u+S2 x (a x r) = -polVp'+ vV2u+ga(T -To) k, (2.2) 

where k is a unit vector in the z-direction. Now the centrifugal forces can be 
expressed as a gradient: 

S2 x (S2 x r) = V (  - +Q2D2), 

where D is the distance of a particle of fluid from the axis of rotation. We define 
the reduced pressure p by 

and (2.2) becomes 
p = p'lpo - &Q2D2, 

(2.4) 

This form of the equations is suitable provided that no boundary conditions are 
given on the absolute pressure P. The viscous dissipation is neglected in the 
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The boundary conditions of no slip and zero heat-flux at the lower disk are 

u = v = w = aT/az  = 0 a t  z = 0. (2.7) 

We now use von Kkmhn’s fundamental assumption that the vertical velocity 
is a function of z only. There will therefore be no closed cells in the flow in a 
vertical plane through the axis of rotation. Then the continuity equation (2.1) 
immediately gives 

if u is finite a t  the origin. Substituting this result in (2.5) and integrating we find 

u = - &rdw/dz  (2.8) 

p = --w ( T - T , ) d z + n ( r ) ,  (2.9) 

where ~ ( r )  is determined by the conditions on the lower disk. Insert (2.9) in 
equation (2.3) to give 

l d w  d2w 2 I d  d3w i5&) - l w - -  (5) (T-To)dz---n(r)-h-- (2.10) 
dz2 r r dr  dz3’ 

Onz = O,by(2.7)and(2.8),~ = w = dw/dz  = 0.Thussincetheintegraldisappears 

I d  
r dr 0 = - - - n(r) + const., i.e. m(r) = +clrz + c2, 

where c1 and c2 are constants. Then, by (2.10), 

- ( : )2-2C2;+T/oG v g a  . a  ( T - T o ) d z  = functionofzonly. 

Hence, for the temperature distribution to be consistent with von Kkmhn’s 
similarity solution, that is, for vlr to be a function of z only, it  is essential that 

:/: $ (T - To) dz = function of z only, 

i.e. T - T  0 - - 1 2 r f ( 4  +h(z ) .  

Equation (2.10) therefore becomes 

(2.11) 

By the similarity of the problem, if we differentiate this equation with respect to 
z we are in fact eliminating the pressure, and the resulting azimuthal component 
of the vorticity equation is given below in (2.13). 

Equation (2.4) reduces to the form given by (2.14) and the energy equation 
(2.61 becomes 

This can happen only if the coefficients of r2 and rc are separately satisfied. The 
two components are shown in (2.15) and (2.16). 
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The governing equations thus reduce to four non-linear differential equations : 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

From the equations (2.13) and (2.14) it is clear that the horizontal temperature 
gradient drives the motion, for f ( z ) ,  by (2.11), is a measure of this gradient. This 
component of the temperature, by the first and second terms respectively of 
(2.15), is convected radially and vertically; whereas the other component h(z), 
by (2.16), is convected only vertically. The first three equations can be solved 
independently of the fourth and so, in this sense, h(z) is determined by forced 
vertical convection. It follows then that an upward flow along the axis could 
occur even if the temperature at  the pole was less than the temperature at  the 
origin. This and other possible anomalies are simply a result of the infinite 
radii of the two disks. In  setting up the boundary conditions on the temperature, 
therefore, care must be taken to create a physically sensible situation. 

The boundary conditions at the lower disk z = 0 are, by (2.7) and (2.8), 

vlr = w = dw/dz = 0, (2.17) 

and the zero heat-flux condition must be applied to both temperature components 

dfldz = dh /dz  = 0. (2.18) 

At the upper disk z = d the temperature components f and h have fixed values 
since the temperature is known, and 

(2.19) v1r = w = dw/dz = 0. 

3. Order-of-magnitude considerations 
In this section we shall deduce, by order-of-magnitude considerations, the 

structure of the velocity and temperature fields for the different situations of 
conduction and convection domination. Then in $ 4  the analytical solutions for 
conduction domination will be described, and in 5 5 solutions will be postulated 
for the situation when convection processes become important. 

3.1. The governing dimensionless parameters 

The simplest procedure for analysing orders of magnitude is to reduce the 
equations to non-dimensional form, so that the orders of magnitude are expressed 
in terms of dimensionless parameters. The only length scale in the problem is the 
distance d between the two disks. For a temperature scale we choose the dif- 
ference in temperature between that a t  the pole, To, and the temperature Td 
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a t  a point on the upper disk distant J2d from the pole: AT = Td - To > 0. This 
particular temperature scale ensures that the dimensionless form off takes the 
value unity on the upper disk. Although there is no natural velocity scale one 
can be formed from the geostrophic balance which we expect to occur between the 
buoyancy and Coriolis forces. Thus if c is this scale 

c = guAT/Q. (3.1) 

This velocity, then, represents the change in the horizontal geostrophic flow 
between two points which are a vertical distance d apart, when the horizontal 
temperature gradient is uniform and is 2ATld. 

Thus define a new vertical co-ordinate and new velocities and temperature 
functions 

5 = x/d, v/r = V($gaAT/(Qd),  w = W(<)ga:AT/Q, 

T - To = +r2f + h = (+r2ct2T + H )  AT. 

We shall call V(5)  the zonal velocity although it is in fact the angular velocity 
of any particle. 

The equations (2.13)-(2.16) now become dependent on three dimensionless 

parameters : __  
p ( 2  V F f  + +WW”’) + 2 V f  = F + + m y ,  (3.2) 

- _  -_ 
C T ~ (  - W‘F + WF‘) = EF”, (3.4) 

(Tpwaf = €(2P+H“) ,  (3.5) 

where primes denote derivatives with respect to 5, and 

(T = V / K ,  /3 = gaAT/(dQ2), E = V/(d2Q), 

The parameter (T is the Prandtl number, which is of order 10 for water and unity 
for air, and p is a Rossby number based on the velocity scale (3.1). We can see 
in these equations that the relative importance of viscous and conduction 
processes is represented by 6 ,  which is the inverse square root of a Taylor number. 
From the discussion of Q 1 it is clear that we are interested in the rkgime of flow 
represented by small /3 and 8. We shall not be concerned with the effects which 
variations in CT produce. Thus we shall assume that 

(T = O(l) ,  p,€ < 1. 

The boundary conditions (2.17)-(2.19) in dimensionless form are 
_ - _ -  - 

at 5 = 0 ,  V =  W =  W f = $ ” = H ’ = O ;  (3.6) 

at 5 = 1 ,  V = W = W ’ = o ,  F = 1 ,  B = o .  (3.7) 
- - _  

Since the parameters p and e are small it is natural to investigate first the effects 
of setting them equal to zero, when equations (3.2) and (3.3) become 

2Vf  = p ,  W f  = 0. (3.8) 

The second of these, by the relation (2.8), shows that the flow in an axial plane 
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is parallel to the axis of rotation, a result which is common to all inviscid axi- 
symmetric flows a t  low Rossby number. I n  the first equation we have the familiar 
thermal wind equation which demonstrates that the horizontal temperature 
gradient drives only the zonal component of the velocity. Now, since the motion 
is axisymmetric, the zonal velocity plays no part in convecting the heat, as is 
clear from (3.4) and (3.5). Thus heat is convected entirely by the flow in an axial 
plane, and this motion must have as its driving mechanism the viscous or inertia 
terms which we have neglected in deriving (3.8). In  spite of the fact then that we 
expect the conduction terms in (3.4) and (3.5) to be small, except in singular 
regions, it is possible for the velocities in an axial plane to be so low that heat 
is transported by conduction processes, as was pointed out in § 1.  

3.2. Conduction domination 

Let us assume first of all that conduction processes do predominate, so that the 
temperature field to a first approximation is determined by neglecting the left- 
hand sides of (3.4) and (3.5). The isotherms are then as shown in figure 1, and 

0.5 1 
1 

0 

+H 

0.5 
r/JZd 

1 

FIGURE 1. Isotherms for conduction domination. Broken curves are 
first-order isotherms for P U / ~ , / E  = lO- l ,  F = 

we can expect that the equations (3.8) will hold throughout most of the region 
between the disks. Close to the disks, however, singular regions are essential 
to provide a driving mechanism for the secondary flow. I n  these regions the 
vertical gradients of velocity become large so that the Coriolis forces are balanced 
by viscous forces. Thus each region is the familiar Ekman layer which has a 
thickness of order d(v/sL), or in dimensionless terms of order d.  

It is well known that, if a real fluid flows at  low Rossby number past a horizontal 
plane which rotates about a vertical axis, then there is a vertical velocity w 
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induced away from the plane given by 

w = 4 2j(@) (curl Uh)Z, 

where Cartesian axes with the z-axis vertical rotate with the plane, and where 
u,(x,y) is the velocity of the fluid far from the plane. In our cylindrical polar 
co-ordinate system this gives 

or in dimensionless terms, since the radial velocity by (3.8) vanishes outside any 
viscous layers, 

This relationship gives the vertical velocity away from both the boundary layers 
as can be verified in the solutions of 0 4.1. 

F =  J€P. (3.9) 

4 -  

3 -  

Y+ = 0.2 
5 e 2  - 

1 -  

0 1 2 

.l&J 
FIGURE 2. Zero-order streamlines of secondary flow at lower disk. 

The flow field can therefore be divided into three regions, namely an inviscid 
core bounded by Ekman layers at each disk. In the core the horizontal tempera- 
ture gradient F ,  by (3.8), drives a unit-order zonal velocity, the change in which 
in a distance of order €4 is very small. Hence by the Ekman layer suction condition 
(3.9) the vertical velocity w is of order c: and is proportional to the value which 
the thermal wind would have at the boundaries. But is constant in any in- 
viscid region of the flow. Thus, if the flow out of one Ekman layer is to match the 
flow into the other, these two values of 7 must be equal in magnitude and opposite 
in sign. Also, since, from figure 1, the horizontal temperature gradient is positive, 
the vertical gradient of v is positive. Consequently the condition (3.9) gives a 
down-draught of fluid. ThestreamIines of the secondary flow are shown in figure 2. 

That the singular layers are in fact proper Ekman layers to a first approxima- 
tion is now clear, for on substituting the orders of magnitude of 7 and in 
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equations (3.2) and (3.3), and remembering that the relevant length scale is of 
order d, we have the following respective orders of magnitude of the various 
terms: p€-& p.-* €-* 1 €-*, 

P B 1 1. 

Since /3 is small it is obvious that the inertia and buoyancy terms are negligible 
in the Ekman layers. What is significant here is that the relative importance of 
the inertia terms is determined solely by the size of the thermal Rossby number ,8. 
Provided that it is small, and that and w are of respective orders 1 and €4, 
the inertia terms are negligible to a first approximation. 

In  the heat-transfer equation (3.4), however, the situation is entirely different. 
(We can neglect (3.5) for the moment since (3.2)-(3.4) form a closed set of equa- 
tions.) In the Ekman layers, order-of-magnitude considerations show that the 

UB UP 1 (3.10) terms in (3.4) have size 

so that conduction dominates. In  the core, however, the sizes of the terms are 

a/?€* up€+ 8, (3.11) 

so that conduction dominates only if 

ap€-% < 1. (3.12) 

This then is an extra constraint on the parameters for our assumption of con- 
duction domination to be valid. But, since the inertia terms are always small 
when /3 is small, if we reverse the condition (3.12) and set ape-4 3 1, then it 
seems that the structure of the flow field will not change. The only difference 
will be that heat is convected in the core by a vertical velocity of order d. This 
example will be investigated in the next section. 

3.3. Convection domination 
The final remarks of the last section indicate that Ekman layer suction is the 
sole driving mechanism of the secondary flow when 

&-* B 1. (3.13) 

Let this condition hold and let us assume that, by some means as yet unknown, 
a temperature field exists in the fluid and drives a unit-order zonal velocity 
according to (3.8). This thermal wind then causes a vertical velocity of order 
efr by the Ekmanlayer suction condition (3.9), and by (3.13) convection dominates 
in the core. Also, the orders of magnitude of the terms of (3.4) are still given by 
(3.10) and hence conduction dominates in the Ekman layers. 

There must therefore be an intermediate thermal layer of thickness S,, say, 
where conduction and convection balance. The orders of magnitude of (3.4) 
in this thermal layer are thus 

up&/6T a,8E4/8T €185 

and a balance occurs if 6, = a-'p-'e*, which, by (3.13), represents a very thin 
layer, yet one which is thicker than an Ekman layer. The real meaning of the 
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parameter r ~ p E - 6  in (3.12) and (3.13) is now apparent, for the condition a/3d < 1 
implies that the thermal layer is very much thicker than the distance between the 
disks, and thus conduction dominates everywhere. On the other hand, if 
s~p-k-1 = IS, << 1, then a very thin thermal layer exists with consequent 
transfer of heat by convection in the core. 

The velocity and temperature fields can thus be divided into five regions, 
namely an inviscid convecting core bounded by thermal layers which in turn 
are bounded by Ekman layers. In  the core the vertical velocity is constant 
and thus by (3.4) and (3.5) the temperature components P and are constant. 
The isotherms are therefore vertical, and consequently the zonal velocity is a 
linear function of the vertical co-ordinate c. 

Since conduction dominates in the Ekman layers, it might seem that F and 
are linear functions of the appropriate boundary-layer co-ordinates </ Je and 
(5- l)/,/e. Such functions, however, are not bounded at  the internal edges of 
the Ekman layers and must be rejected. Thus P and a are constant there. 

In  the thermal layers, order-of-magnitude considerations show that the Corio- 
lis term in (3.2) is the largest, so that, to a first approximation, the zonal velocity 
is constant. Our assumption that the vertical velocity is constant both in the 
core and thermal layers is confirmed in a similar manner. Thus equation (3.4) is 

O-pWF = a, 
which integrates to give 

P = Aexp(a;BFLJe)+B and F = Cexp(rTPm(5-1)/e)+D 

in the lower and upper thermal layers, respectively, where A ,  B, C, and D are 
constants. But, since w is constant outside the Ekman layers, only one of these 
solutions can be bounded as g approaches values in the core, i.e. as LJIS, becomes 
large and positive and (5- l)/IS, becomes large and negative. Clearly the bounded 
temperature belongs to the layer into which the vertical velocity flows from the 
core and thus the other layer cannot exist, at  least to this order. Which layer 
does exist therefore depends on the sign of and this in turn is determined by 
the Ekman layer suction condition (3.9)) the appropriate values of 7 being 
determined from the thermal wind equation (3.8). It seems reasonable to expect 
that F will again be positive, which immediately implies a positive vertical 
gradient of the zonal velocity 7. Again the values which the thermal wind 
would have at the boundaries must be equal in magnitude and opposite in sign, 
and thus there must be a down-draught. Consequently there is no upper thermal 
layer to this order, and the net result is that the temperature field on the upper 
disk is swept down by the secondary flow to the upper edge of the lower thermal 
layer. 

Since the lower disk is insulated, the function of the lower thermal layer is to 
ensure that the vertical flux of heat in the core into a control annulus balances 
the outward radial flux of heat in the Ekman layer. This is shown schematically 
in figure 3. (I am grateful to Dr F. P. Bretherton for this interpretation.) Thus in 
dimensional terms, if the quantities in the core and in the Ekman layer are 
denoted respectively by the absence of subscripts, and by subscripted e's, 
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we have 

r2 - -) ]r+Br 
- F + H e  AT 2 m d z  
2d2 r 

= [I:" -- r2dw, __ ( - r2 F - + H e  -) AT 2 n d ~  ]r+br by (2.% 
2 dz 2d2 r 

where 8, is the thickness of the Ekman layer. The integral can be evaluated 
immediately, since we have shown that the temperature components are con- 
stant in the Ekman layers. Hence, since P = 1, and B = 0, it  follows that 

Fe = 4, He = 0. (3.14) 
- - 

FIGURE 3. Conservation of heat, shown schematically. 

3.4. A temperature mximum at the pole 

In the last two sections it has become clear that the down-draught of fluid is 
caused by the combined effects of a temperature minimum at the pole, the 
thermal wind equation and Ekman layer suction. It seems reasonable to suppose 
that, if the temperature distribution on the upper disk has a maximum at the 
pole, then an up-draught of fluid will occur. Such a temperature maximum, 
however, means that the temperature scale of 5 3.1 must be altered to 

AT = To-Td > 0.  

T - To = ($r2d-2P + B) AT, 

(3.15) 

Thus we have 

and the boundary conditions on the temperature at  5 = 1 are 
- - 
H =  0, F = - 1. (3.16) 

If conduction processes dominate then the temperature field to a first approxi- 
mation is known everywhere. The structure of the flow field is the same as in 
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$3.2: the zonal velocity now has a negative vertical gradient in the core so that 
the Ekman layer suction condition (3.9) gives an up-draught of fluid. Clearly 
the extra constraint (3.12) must be imposed. 

If convection processes dominate we must alter the temperature condition 
on the lower disk since the problem is no longer properly posed. For, if there 
is anup-draught of fluid from an insulatedlower disk the temperature of the rising 
particles is not specified anywhere, a consequence of the infinite radii of the disks. 
Consistency can be achieved if we stipulate that the lower disk is maintained at  
a uniform temperature, i.e. 

a t  < = 0, P = 0, IT= h,, (3.17) 

where h, is a negative constant. Even now the boundary conditions seem to 
be absurd, because we can always find a point on the top disk at which the 
temperature is less than h,. This inconsistency also arises because of the nature 
of the similarity solution, and can be ignored by restricting our considerations 
to a suitable region close to the axis. 

We might expect that the structure of the velocity and temperature fields 
will be identical with those of $3.3, but this is not so. For an up-draught of fluid 
implies that there can only be an upper thermal layer with the result that below 
this layer the fluid is homogeneous. Consequently by (3.8), since P = 0, the zonal 
velocity is constant between the Ekman layers. But we have already discovered 
that to maintain a constant vertical velocity which links the Ekman layers the 
zonal velocity must change sign in the inviscid regions. 

The anomaly arises because we have expected the velocities to be of the same 
order of magnitude as those of $53.2 and 3.3. By carrying homogeneous fluid 
upwards, however, the secondary circulation is working against the downward 
diffusion of the non-uniform temperature field from the upper disk into the 
fluid. In  other words, the convection tends to restore the system to equilibrium. 
We must therefore expect that there is a balance between the two opposing 
methods of heat transfer, and this balance results in smaller velocities than 
we had anticipated. 

can be ascertained from the fact 
that the zonal velocity must change sign outside the Ekman layers. If we assume 
that the relative structure of the Ekman and thermal layers is maintained, the 
only possible way in which 7 can vary in the inviscid regions is by a geostrophic 
balance in the upper thermal layer. Thus, by equation (3.2), 7 = O(8&), where 
8; is the thickness of this layer. Now if w is constant outside the Ekman layers, 
which are still of thickness 8, = O(&),  we know from the Ekman layer suction 
condition (3.9) that w = O ( d 7 )  = O(ehY&). Hence the orders of magnitude of 
the terms of (3.4) in the thermal layer are 

The correct orders of magnitude of 7 and 

cTp&h3&Y& cTp€h?&/8& €18:. 

Since convection and conduction must balance we have 

8& = &&p-b-&. (3.18) 

Thus 7 = O ( d p - * d ) ,  w = O(&-&g-&). (3.19) 

These orders of magnitude of the velocities now give a consistent solution. 
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3.5. General considerations 
It is clear from the above discussion that the general structure of the velocity 
and temperature fields is not a direct consequence of the similarity solution. 
The result of von Karmhn’s assumptions is simply that the terms which would 
be neglected in the first approximation in fact vanish identically. Thus the order- 
of-magnitude considerations apply to any general axisymmetric flow between 
horizontal planes which rotate about a vertical axis, provided that the effects 
of vertical boundaries are negligible, and that the applied temperature gradient 
does not change sign. This latter constraint must apply, for it seems that singular 
layers parallel to the axis of rotation might develop if it is violated. Consider, for 
example, the axisymmetric flow between two horizontal rotating disks, at  the 
upper one of which a temperature distribution is imposed with a gradient which 
oscillates about zero with distance from the axis of rotation. The lower disk is 
insulated and conditions are such that convection dominates. We might then 
expect there to be alternate regions of up-draught and down-draught. But, as 
we have seen, thevelocities in thedown-draughtregions are an order of magnitude 
larger than the corresponding velocities for regions of up-draught. Consequently 
any upward motions are not ‘sucked ’ by the surface temperature distribution 
but are forced by the downward flow. In regions of down-draught there is a lower 
thermal layer above which the isotherms are vertical so that the zonal velocity, 
by the thermal wind equation, varies linearly with depth. Fluid passes from 
the regions of down-draught to those of up-draught in the lower Ekman layer, 
where the temperature is constant with depth to a first approximation. Consider 
the simplest situation when the streams of fluid which enter a region of upward 
motion from opposite sides have the same temperature. Then in those regions 
there is an upper thermal layer below which the fluid is homogeneous with the 
result that the zonal velocity is constant with depth. Hence, where the regions 
ofup-draught anddown-draught meet, theremust bevertical thermallayers which 
link the upper and lower horizontal thermal layers and which provide the neces- 
sary discontinuity in the temperature distribution. Also there must be vertical 
viscous layers to provide the necessary discontinuity in the zonal velocity. Of 
course, until a detailed analysis of such layers is made, the above argument is in 
doubt. 

With regard to the rotating annulus experiments mentioned in Q 1, it is obvious 
that the above deductions cannot be applied directly to the axisymmetric 
geostrophic rhgime, because in the experiments the temperature distributions 
were imposed on vertical boundaries. It is generally recognized that viscous 
and thermal layers occur at these vertical surfaces, but the manner in which 
they influence the flow in the core is not properly understood. From the above 
considerations, however, it seems reasonable to expect that it is the Ekman 
layers at the horizontal boundaries which control the flow and hence the tempera- 
ture field in the core, and that the vertical layers which are parallel to the rotation 
axis play the passive role of channelling fluid from one Ekman layer to the other. 
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3.6. A free top surface with a temperature minimum 

Lastly, it is interesting to retain the temperature boundary conditions of 9 3.1, 
and replace the upper disk by a free surface. This we define to be a surface on 
which the tangential viscous stresses vanish. Thus we have 

a t  z = d ,  w = aujaz = av/az = 0, f and h given, 

i.e. at 5 = 1 ,  W = W " = v ' = O ,  p = + l  H = O .  (3.20) 

Such a definition of course is only an approximation, since the position of a true 
free surface is not fixed but is a function of the motion of the fluid. But the defini- 
tion is reasonable provided that the centrifugal forces and the slope of the true 
free surface are small. Once the solutions are obtained, the approximate position 
of the true free surface can be calculated in the following manner. Let the dis- 
placement of the free surface from the fixed free surface z = d be [ ( r )  and let the 
solution for the zonal velocity at the fixed surface be v(r). Then, since the centri- 
fugal forces are negligible, v(r) must be driven by the hydrostatic pressure 
gradient caused by the slope of the free surface, 

- -  - - - 

2Qv(r) = - (l/p,) a p * p  = gd€Jdr. (3.21) 

The approximation is valid provided that 2Qv(r)/g is small. 

then 
If the inertia terms in (3.3) are neglected and the resulting equation integrated 

- 
- W (  1) + F(0) = €{ V'( 1) - F'(0)). 

Since all three terms w(l), F ( O ) ,  and v'(1) vanish, there is no tangential zonal 
stress on the lower disk. If conduction dominates, it follows from the thermal 
wind equation (3.8) that the temperature field drives a zonal velocity which has 
a non-zero vertical derivative a t  the lower disk and the free surface. In other 
words, the thermal wind exerts a unit-order stress on these two surfaces. We 
can therefore divide the flow field into two parts: the zonal velocity driven by 
the thermal wind equation; and the zonal velocity and secondary flow which 
are caused by the application of a stress a t  the two boundaries of the fluid. 
This stress must be both equal in magnitude and opposite in sign to that produced 
by the thermal wind in order to satisfy the vanishing stress conditions. Now a 
result of Ekman layer theory is that the vertical velocity, which is induced 
away from a boundary by a wind stress S on the surface of an ocean, is given by 

w = &(v/Q)  curl S. 

Since the stress exerted by the thermal wind is of unit order we can see that 
in dimensionless terms we have F = O ( e ) .  Inserting this in the heat transfer 
equation (3.4), the orders of magnitude for the core are 

ape ap€ e 

and thus conduction dominates provided only that /3 is small. When the surface 
is free, therefore, we cannot obtain convection domination with negligible 
inertia terms. 
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4. The solutions for conduction domination 
4.1. Flow between two rotating disks 

From the equations (3.2)-(3.5) it is clear that, if all the dependent variables are 
expressed as power series in p, the series inserted in the equations, and coefficients 
of the powers of /3 equated, then both the inertia and convection terms are 
omitted to the first order of approximation and we have conduction domination. 
This expansion can be carried out, however, only if we assume that e = O(1) 
for small ,8. Since e itself is small the validity of the expansion procedure is likely 
to be determined by a constraint which involves a combination of /3 and E ,  

as we discovered in $3.2. Put 

When the expansions (4.1) are inserted in the two parts of the energy equation, 
the coefficients of Po give the zero-order temperature field: 

Fi = 0, 2F0+H; = 0, 

where the boundary conditions, by (3.6) and (3.7), are 

F;(O) = Hh(0) = 0, Fo(l) = 1, Ho(l) = 0. 

The solut,ions are simply 
Fo = 1, Ho = 1-c2, 

andthe temperature field, therefore, has a minimum value at the pole (see figure 1). 
The coefficients of pOin (3.2) and (3.3), by (4.2), are 

2v; = 1 + &EW& (4.3) 

- w; = EV;;, (4.4) 

with the boundary conditions that 

at [ = O  and 6 = 1 ,  W , = W ; = V , = O .  

Thus the zero-order velocities are driven by the known zero-order temperature 
field. These velocities will, in turn, determine the first-order temperature field 
and this procedure will be repeated to all orders. 

Although the equations (4.3) and (4.4) can be solved exactly with the appro- 
priate conditions, it is more instructive to treat the problem as a boundary-layer 
one because we expect that viscous effects will be small in the body of the fluid. 
It is convenient to introduce boundary-layer co-ordinates Q = </& for the 
lower Ekman layer, and cE = (6- l) /& for the upper. The approximate solutions 
are then 

V, = t(2C- 1 + e x p ( - ~ ~ ) c o s ~ e - e x p ~ E c o s ~ E ) ,  

w 0 - - - _  ,/'€ (1 - exp ( - Q) ( ~ 0 s  Q + sin Q) - exp &:E(cos CE - sin &)), 

(4.5) 

(4.6) 

with errors in V, and W, of order exp ( - l/&) and & exp ( - lid€), respectively. 
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Now from the continuity equation (2.1) and by (2.8) it follows that a dimen- 
sional stream function @ can be defined by 

@ = - ‘ 2  2 7  w ( 4 .  

Y = - *(r/d)2 W(C), 
In dimensionless terms this becomes 

and thus the first term of (4.6) confirms the order-of-magnitude analysis of $3.2 
that in the body of the fluid the flow in an axial plane is parallel to the rotation 
axis. Radial flow is confined to the boundary layers which are linked by the 
constant downward continuity current. Some of the zero-order streamlines are 
shown in figure 2. 

From the equations (3.4) and (3.5) the coefficients of /3 give the equations for 
the first-order temperature field 

a( - w;Fo + W0&) = €Pi, (4.7) 

c7WoH; = €(2F1 + Hi). 
The boundary conditions are, 

at 5 = 0, F; = H i  = 0 and, a t  b = 1, Fl = Rl = 0, 

and the approximate solutions are 

= $(a/ 4.) (5- l) + ta{ + exp ( - c e )  cos c e  - exp CE cos { E } ,  (4. 9, 

HI = i(a/&) (p- l)-&(p- l)-*a&<-$) 

+ aae exp ( - ce) {&@in Q - cos Q )  + 3 sin!Q) 

- $ge exp cE {gE(cos cE + sin cE) - 3 sin cE}, 
- $a Je exp cE (cos CE + sin Q) 

(4.10) 

with errors of order exp ( - l/Je) and &exp ( - l/$), respectively. Note that 
the boundary-layer contributions to F1 are much larger than the contributions 
to Hl. This is because the zero-order temperature components are convected in 
different directions. Since Fa is a constant, it is convected radially, and this 
occurs only in the Ekman layers where the radial velocity is of order unity. 
On the other hand Ha is convected vertically and the vertical velocity is every- 
where of order &. Some isotherms are shown in figure 1 in which it is clear that 
the secondary flow tends to push the zero-order isotherms down to the lower disk. 

The equations for the first-order velocities are 

and 

with the boundary conditions 

These two equations can be solved with errors of order exp ( - l/&) simply by 
inserting the known solutions and integrating. But the primary driving mechan- 
ism of V, and Wl can be understood more clearly if we examine, in turn, the terms 
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in ascending orders of E .  For this reason divide the flow field into the three regions 
of $3.2: the lower Ekman layer, where the relevant co-ordinate is 5, and where 
variables are denoted by a subscripted e ,  e.g. G,e; the upper Ekman layer with 
co-ordinate CE, where variables are denoted by a subscripted E, e.g. K,E; 
and the core of the fluid. 

The largest terms in (4.11) must be of order e-4, by (4.9) 

2v; = $(a/& (6- 1). 

Thus the largest component of V, is driven solely by the first-order horizontal 
temperature gradient. Since is of order 8-4 we expect that a form of Ekman 
layer suction will produce a vertical velocity W, of order unity. Both top and 
bottom boundary layers have then the form 

22/€v;,, = +WFe, - w;,e = 2/€v;,e, 

The full non-linear terms enter into the boundary-layer equations for the next- 
order components of V, and W,, which are of magnitude 1 and ,/€, respectively. 

It is now a straightforward matter to examine the constraint on B and B for 
the expansion procedure to be valid. Since all the terms in the solutions, apart 
from factors of 8, are of order unity, or less, the zero and first-order terms are a 
good approximation to the exact solution if 

p8-4 < 1. 

We have assumed, however, that v = O(1). The most general form of the con- 

q3e-4 4 1. (4.13) 
straint is thus 

We note, therefore, that an alternative method of solution would be in the form 
of a simultaneous expansion of the variables in powers of /3 and r b d .  

4.2. Plow with a free top surface 
In  $3.6 it was suggested that conduction processes would always dominate for 
small Rossby number if the upper disk were replaced by a free surface. Since the 
method of solution is exactly the same as the above, it seems appropriate to 
treat this example now. It is clear from the power series expansions in B that the 
zero-order temperature field will be that given by (4.2) and that the zero-order 

28 Fluid Mech. 24 
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velocities will satisfy (4.3) and (4.4) with the boundary conditions, by (3.6) 

a t  6 = 0, 
a t  5 = 1, 

W, = WA = V, = 0, 
W, = W: = V;  = 0. 

and (3.20), 

The approximate solutions are then 

V, = Q{ - ,/e + j e  exp ( - Q) cos Ce - Q Je exp CE ( cos CE + sin &)}, (4.14) 

(4.15) 

with errors in V, and W, of order $exp ( - 1/&) and e exp ( - lid€), respectively. 
It is interesting to note that, since W, = O(E), equation (2.12) shows that the 

constant c1 is of order jv and hence by (2.9) the reduced pressure p is determined 
to a first approximation by the hydrostatic equation alone. Also, by the first 
term of (4.14) and by (3.21), if the centrifugal forces are small we can imagine 
the slope of the true free surface to be agenerator of a dimensionless zonalvelocity 
of Q which is cancelled out with depth by the thermal wind. 

We now see that, since W, is of order e, it is exactly the correct order of magni- 
tude to ensure that Fl and Hl are of order unity in the core of the fluid. The solu- 
tions to (4.7) and (4.8) with the appropriate boundary conditions are 

W, = - Qe{ 1 - exp ( - Q) (cos Q + sin Q) - exp CE cos 

F1 = + ~ { c  - 1 + Q ,/e + j e  exp ( - K c )  cos ce - + j e  exp CE( cos CE + sin &)}, 
H, = a [ & ( ~ z - -  1) - &,,/e(Cz- 1) -e(<- 1) +@+ ?j&exp ( - Q) {d(sin Q- cos Q) 

+ 3 sin [J - i e  exp cE sin cz - 4 ef exp cE{cE sin CE - g(sin CE - cos &)>I, 
with errors proportional to &exp ( - l/&) and eexp ( - 1/&) in Fl and HI 
respectively. Again notice the difference in the orders of magnitude of the two 
components in the Ekman layers. 

In discussing the first-order velocities we divide the flow field in the manner 
of $4.1. Then, in the core of the fluid, the largest terms of equation (4.9) are of 
order unity and are 

Define the solution to this equation to be VF where 

2v;+*c = &o-(<- 1). 

VT = $CZ(o-- 1) - $a<. 

This zonal velocity, in contrast to that of $4.1, is thus driven by the non-linear 
terms which involve only the zero-order thermal wind F‘? = $6, and by the first- 
order temperature field. The surface stress condition (3.20) cannot be satisfied, 
however, and consequently we expect there to be a viscous component VT 
which will be of order .J. and which will satisfy the boundary conditions that, 

a t  c =  0, V: = 0 and, at [ =  1, V,*’= t, 
Associated with this zonal velocity, Ekman layer suction will produce a vertical 
velocity W,, of order e. 

Thus write 
V, = V r +  VT, E; = FT+FT, 

where FT = &(<- l), and the equations (4.11) and (4.12) become 

2VT’+cV$’+ V$+2Vg V,*’+QWo W t  = F T + & z W ~ ~ ,  
- w;- &Wi(+[+ V*,)+w,(++ V$’) = &(a- l)+€V;’’, 
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where V: is the viscous component of the zero-order zonal velocity. In  the core 
the highest-order terms are 

ZVT'+6V,*'+ vg = FT, 
- w;-4wg++w0 = $€(B- l ) ,  

and we see that the terms in V$ and W, on the left-hand side are due to advection 
by V r .  Some of these terms appear in theupper boundary layer, where the highest- 
order terms are 

(ZVT,$+ V$,&)1/€ = $ W i E 7  

ev;,,J€ = 4wpe7 - w;,, = J€Vi,,, 

- W' -- ; w;,, = 2/EVT,'L. 1, E 

Primes denote derivatives with respect to c,. But in the lower boundary layer 
V r  is small and thus 

where primes denote derivatives with respect to 5,. The lower boundary layer to 
this order of magnitude is thus an Ekman layer. 

The matching solutions to the equations are easily found 

I 
1 

VZE = + ~ o + ~ e x p C E ( ~ ~ ~ ~ ~ , + + s i n ~ ~ - ~ E c o s 5 E ) } ,  

V;,, = $Js (1  + c) (1 - exp ( - Q )  cos C,); 
v T = f €  J ((1 + 44 c+ (1  + 4 1 7  

K, E = &{ - exp CEfCoS CE - 4CE cos Clj,' f sin cE)}7 

w, = fscq 1 - 5) + &, 
&,, = fs( 1 + o) (1 - exp ( - Q )  (cos Q + sin C,)}. 

This process can be repeated for higher-order terms in 8 until the errors are 
proportional to exp ( -  ~ /JE) .  

It is clear from these expressions that the condition for the validity of the 
expansion procedure is ap < 1 and thus conduction processes always dominate 
for a flow with low Rossby number. 

We note in passing that, with both types of top boundary conditions on the 
velocity, the choice of a temperature maximum would simply reverse the linear 
zero-order flow. Also note that an alternative method of solution is to expand 
the variables simultaneously in powers of /3 and g/3. 

5. Solutions for convection domination with a temperature minimum 
5.1. The singular regions 

We come now to the situation discussed in 33.3 when we expect convection 
processes to dominate in inviscid regions. Solutions of the equations (3.2)-(3.5) 
are posulated by the technique of expansion matching which has been described 
by Lagerstrom & Cole (1955) and Proudman & Pearson (1957). The details of 
the method and the manner in which it can be applied will be discussed in the 
course of the section. 

Since the condition for convection domination involves both /3 and 8, it is more 
convenient to choose a new parameter h which is defined by 

h = q3-2. (5.1) 
38-2 
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Then clearly the thickness of the thermal layer is of order ,/A. To simplify matters 
still further let us postulate a relationship between /3 and h 

h = p', (5 .2)  

where T is some positive constant, the value of which will affect the solutions 
in some way. 

From the discussion of $3.3 it seems that the Ekman and thermal layers are 
singular regions of the equations of motion in that, in these layers, viscous 
and conduction terms respectively become significant and balance the Coriolis 
and convection terms. Since the structure of singular layers is determined solely 
by the equations of motion, it is possible to establish that these are the only 
types of singular layer by introducing a new co-ordinate 

and by setting 

where all the new variables are assumed to be of order unity. Then substitute 
(5.3) and (5.4) in the equations (3.2)-(3.5) and let /3 tend to zero for fixed f 
to obtain various limits of the equations for different values of n. Another reason 
for this procedure will be evident shortly. Thus we have 

f = UP" (n 2 0 )  (5.3) 

(5.4) 7 = 8, W = ,/€ W = /31+bW, 7 = 3, a = H ,  

(5.5) 

( 5 . 6 )  

1 
i 
i 

limit 1 = n = 0, 

2V' = F ,  W' = 0, 

- W'F + WF' = 0, 

2V' = 0, 

- W'F + WF' = 0, 

WH' = 0, 

(5.7) 

limit 2 = 0 < n < +T, 

W' = 0, 

WH' = 0, 

W' = 0, 

limit 3 = n = 47, 

2 V f  = 0, 

C( - W'F + WP')  = Ff', cWH' = H", 

limit 4 = 47 < n < 1 + + ~ ,  

2V' = 0, W' = 0 ,  

0 = F", 0 = H",  
(5.8) 

(5.9) 

(5.10) 

limit 5 = n = 1+&-, 
2V' = &WIT, -w'=v",  

0 = F", 0 = HI', 

1 
l i m i t 6 r n >  1 + & ~ ,  

0 = wiv, 0 = V", 
0 = F", O = H .  

Primes denote derivatives with respect to 5. 
Now the relationship (5.3) with fixed f ensures that we are considering the 

flow in the neighbourhood of the boundary < = 0. The different limits thus indi- 
cate, to a first approximation, the nature of the flow when 5 = O(,@). Clearly 
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then, the equations (5.5) represent geostrophic flow with convection domination 
far from the boundaries. Conduction balances convection in (5.7) where 

6 = o(pq = o(p-ls*). 

This is the thermal layer which we postulated in $3 .3  and we confirm that in this 
layer the buoyancy forces no longer drive the zonal velocity so that V ,  as well 
as W ,  is constant. Finally, the equations (5.9) are those for an Ekman layer 
with heat transfer by conduction. The fact that W is constant everywhere 
outside this layer means that our assumption in (5.4) that w is of order €4 is 
justified. 

To apply the expansion matching method, the Ekman layer at  the lower 
disk, say, is described by rewriting the full equations of motion in terms of the 
unit-order variables of (5.4) and the scaled co-ordinate [ of (5 .3)  with n = 1 + $r. 
It is then proposed that the exact solutions of the original equations of motion 
(3.2)-(3.5) can be expressed in that Ekman layer as asymptotic series in the 
small parameter p and the co-ordinate 6 = {/:Ip1+*'. Moreover, it is postulated 
that these expansions are, in fact, the asymptotic solutions for the new, scaled, 
form of the equations of motion. Thus the expansions are valid in the domain 
of validity of the scaled equations. An exactly similar process is used for the ther- 
mal layer at the lower disk. If now the domains of validity of the equations which 
represent these thermal and Ekman layers should overlap, then in that region of 
overlap the corresponding expansions are both asymptotic representations of the 
exact solutions, and hence must be identical in some asymptotic sense which 
will be described in $5 .2 .  This then provides the link between the expansions in 
the two regions and is the basis for the matching process. A similar procedure 
is carried out for the core and the upper thermal and Ekman layers. 

Clearly the matching of the expansions depends on a knowledge of the domains 
of validity of the equations which describe the flow in each region, and it is for 
this reason that theintermediate limits (5.6), (5.8), and (5.10) have been included. 
It is a straightforward matter to show that limit 2 of the terms of equations 
(5 .5)  and (5 .7 ) ,  written in the original form of (3.2)-(3.5), gives equations (5.6). 
Thus, if 6 = O(p"), 0 < n < 67, equations (5.5) and (5 .7 )  are equally valid for 
representing the flow. A similar analysis shows that equations (5 .7 )  and (5.9) are 
equally valid in the range i r  < n < 1 + 67, and that equations (5.9) alone are 
valid when n > 1 + 67. As we have seen, this overlap of the domains of validity 
of the various regions is absolutely essential to the matching process. The 
domains of validity are shown schematically in figure 4. From the diagram 
it is clear that the asymptotic series in the thermal layer provide the links 
between the series in the Ekman layer and the inviscid core. 

Our model, however, is essentially one which depends on two parameters 
h and p ,  and we must therefore examine the domains of validity in terms of 
these numbers so that the significance of the constant 7 can be properly under- 
stood. Let the powers of and h in (5.5)-(5.10) be M and N ,  respectively. 
Then the critical values of n represented by limits 1, 3,  and 5 are the critical 
values of M + r N .  If, for example, r = 2 ,  M and N satisfy the relationships for 
these limits M + 2 N  = 0, M + 2 N  = 1,  M + 2 N  = 2 ,  
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respectively, and the domains of validity are determined by these lines in the 
( M , N )  plane. These domains are shown schematically in figure 5, in which the 
origin represents the region far from the boundary. The significance of the con- 
stant r is immediately apparent, for all the lines which bound the domains of 

(5.5) valid 
I 5 = 0 (p) 

s=  0 

FIGURE 4. Domains of validity for a temperature minimum. 

1 

I 
2 
- 

0 M 
M+2N- 1 

M+2N=O 4 1 
FIGURE 5. Domains of validity for a temperature minimum. The domains are represented 
by the type of shading: vertical, (5 .5)  valid; sloping, (5.7) valid; horizontal, (5.9) valid. 

validity have slope - 1/7. Thus, if the parameters h and p are varied, the slope of 
each critical line is changed by the same amount, and the positions of the singular 
regions are not altered in relation to each other. 

As r is varied, we can see from figure 5 that the three critical lines always 
pass through one of the points ( O , O ) ,  (0, +), and (1, g). The structure of the singular 
regions, therefore, breaks down when r tends to infinity or zero, for, in either of 
these limits, the middle critical line M + TN = +r tends to coincide with one of 
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the other two. It would appear then that there could be no overlap of the resulting 
two regions, and consequently no matching could take place. The explanation 
is that these two limiting values of r imply that either /3 or h is of order unity. 
If p is of order unity, the inertia terms of (3.2) and (3.3) are always of the same 
order of magnitude as the Coriolis terms, and the Ekman and thermal layers 
have the same thickness. On the other hand, if h is of order unity, then by (5.1) 
the thermal layer covers the entire region between the disks and conduction 
can never be dominated by convection. Clearly, therefore, these two limiting 
values do not belong to our discussion. 

The full equations in each region of the flow are a simple consequence of 
the above. In  the core, the co-ordinate is 5 and the variables are v = V ,  

= /31+*'W,F = F,andf l=  H.Thus 

/3( 2 V V' + &B2+' W W"') + 2 V' = F + 4p3+3' Wiv, 'I 

I p( - w v +  W V ) -  w = / 3 1 + + T ,  

a( - W'F + WF')  = PhF'', 

aWH' = /34'(2F+HH"). 

(5.11) 

The equations for the thermal boundary layers are those obtained by limit 3 
= CI/p*' near the lower boundary and &, = (5- 1)//3$' near the upper. with 

Here the variables are 

v =g,  W=p'+"%, P = 4, H =  H,, 
in the lower thermal layer, and the lower case subscripts are replaced by upper 
case in the corresponding upper layer: 

(5.12) 

Lastly the Ekman layer equations correspond to limit 5 with co-ordinates 
ce = iJPl+*r = near 5 = 0, and l& = (5- 1)//31+*' = cT/p near 5 = 1. Vari- 
ables are denoted by lower and upper case letters respectively in the lower and 

(5.13) 

upper layers: p( 2v, V;  + *w, W f )  + 2 v; = p"+'& + g wp, 
p(-w;K+$V;)-w;= v:, 

UP(- W;l$+KFL) = F,", 
./3W, H ;  = 2P2+'& + H:. 

5.2. The matching process 

As we mentioned in $5.1, the solutions are obtained by expressing the variables 
in each region as asymptotic series: 

(5.14) 
V(5)  = %i(B)W),  0 W(5) = 5%(P)W,(5) ,  0 

P(5) = 2 W), H(!3 = ?PAP) Hi(6), 
0 0 
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where, for example, 
lim = 0, and Zo(p) = 1. 

Lower and upper case subscripts are added for the appropriate thermal and 
Ekman layers. 

When the expansions (5.14) are inserted in their appropriate equations, it is 
clear from (5.5) to (5.10) that the value of r does not, affect the zero-order solutions. 
But, by (5.11)-(5.13), the value of T determines the Zi(,6), etc., and we shall see 
that as r varies there is, in fact, an infinite number of solutions. 

Only the expansions in the two Ekman layers can satisfy any boundary con- 
ditions, these being either (3.6) or (3.7). All other expansions are determined by 
a matching process which, as we noted in $5.1, depends on the fact that each 
series is a locally valid expansion of the exact solutions of the equations of motion. 
Then, since the domains of validity of two neighbouring expansions overlap, 
their intermediate limits must be identical. For example 

limit 2 of V - K  3 0 (5.15) 

equates the zero-order terms of the core and thermal layer expansions of the 
zonal velocity. Matching of higher-order terms is achieved by subtracting the 
appropriate partial sum from each expansion, before the limit is taken. Without 
the region of overlap, therefore, matching would be impossible. 

Since we know that matching is possible, the procedure of (5.15), etc., can be 
simplified by stating, for example, that the asymptotic expansion of XZt,Jp)T$&) 
for large cf, expressed in terms of 5 = lJTcf,  must be identical with the asymptotic 
expansion of XZi(,8) I$(<) for small 5. Thus terms of the form exp ( - <//?JT) in the 
lower thermal layer will not have a counterpart in the core. This procedure is 
legitimate althoughit implies that the expansion for c i s  valid when [is of orderPo. 
Alternatively, matching can be achieved by equating the asymptotic expansion 
of ;CZ,(p) V,(<) for small 5, expressed in terms of 6, to the asymptotic expansion of 

In  practice of course it is necessary to solve for one term at a time. The equations 
for the first few terms in each series are very simple, and our procedure will 
be to solve all the zero-order terms at  once, then the first-order and so on. 

F+ o zi(P) 

Xh, i (P)  K,&) for large < l a  

5.3. The zero-order terms 

The zero-order terms, in order from the top Ekman layer downward8, are 

2V&,, = *w2,, - 
0 = F&,o, 

(5.16) 

2VA = Fo, WA = 0, 

WoHA = 0,  WoFA = 0, 
(5.18) 
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(5.20) 1 2v:,o = +w:y, - w:,o = V l 0 ,  
0 = F,:,, 0 = HB0, 

with boundary conditions by (3.6) and (3.7) that, 

at CE = 0, %',o = WE,o = Wi,o = HE,o = 0,  FE.0 = 1, (5.21) 

at ce = 0, (5.22) 

As we deduced in $3.3, since the zero-order vertical velocity is constant 
outside the Ekman layers, the solutions for the temperature components in 
the thermal layers are exponentials. But only the layer into which the fluid 
flows from the core can admit a bounded solution, and consequently only one 
thermal layer can exist to this order for any given boundary conditions. An 
examination of equations (5.12) shows that, in the region where there is no thermal 
layer in the zero-order terms, the zero-order vertical velocity determines the 
exponential behaviour of the first-order temperature field, but the sign of this 
velocity is such that the exponential is unbounded. Hence only one thermal 
layer can exist to all orders. 

To solve equations (5.16)-(5.19) we assume that there is a downward flux 
of fluid outside the Ekman layers. Matching solutions are easily obtained: 

E,o = TQo = WL,o = FL,o = Hko = 0. 

(5.23) 

(5.24) 

i 
i 

%,o = Hl-exPCEcosCE), 

%,o = 4, v, = t ( 2 5 -  I ) ,  6,o = -t, 
E,o = - t ( l -ex~(-Q)cosQ) ;  

(5.25) 

= -${ l - exp&((~~~&--s inc~) ) ,  

W& = w, = &,o = -&, 
' K , o  = - ){1 -exp ( - 6)  (COS Q+ sin Q)}; 

4 . 0  = a,exP(-&4r)+1, 
&,o = 1+a,; 

HE,o = HT,o = Ho = 0, 

Ht,o = a2ex~(-$~Ct) ,  
(5.26) 

where a1 and a2 are constants. The streamlines of the secondary flow are thus 
very similar to those of figure 2. 

The two constants must be found by matching the coefficients of ct in (5.25) 
on to terms of the form ,8Q in Fe and He. Since the value of r is unknown, the co- 
efficient of /3 in Fe and He may not necessarily be the next term in the expansion. 
Let it correspond to the j t h  term so that ne,j = pe,j = p. The equations for c,$ 
and He,j are then by (5.13) 

1 
I FE,o = FT,o = Fo = 1, 

f4,O = a,; 

a ( - ~ 7 ~ , o & , o + W , , o ~ ~ , o )  =FZ,j, aK,OHL,,o= Hz j ,  

with boundary conditions by (3.6) that, 

at ce = 0, P' . = H' . = 0. 
t', I e 3 



442 Iain B. Duncan 

The solutions are 

-4,j = t a ( l + a l ) ( Q + e x ~ ( - Q ) ~ o s Q ) + b l ,  He,j = b2, (5.27) 

where b, and b, are constants. Here again, as in $4.1, we see that F and H behave 
in a different manner in the Ekman layers because the former is convected radially 
and vertically whereas the latter is convected only vertically. Matching the 
solutions in the thermal and Ekman layers we have 

a - - _  i, a2 = 0. 

Thus (5.25) and (5.26) are replaced by 

= FT,o = Fo = 1, 

Ft,o = 1 - $ exp ( - &rct), .F,,o = +, 
HE,, 0 = HT.0 = HO = Ht,o = He,@ = 0, 

which confirms the deduction (3.14). 
The calculation of & also confirms the assumption of a negative vertical 

velocity. For, if the vertical velocity is positive, there can be no lower thermal 
layer and thus a1 vanishes and Fe,o and 4,0 are constants. The relation (5.27) is 
then 

the linear term of which clearly cannot match any term in the thermal layer. 
Thus c,o = 0, but this in turn implies a paradox in the matching of the zonal 
velocities. The vertical velocity therefore must be negative. Moreover, since the 
vertical velocity can never be positive we have confirmed our deductions of 
$3.4 that the problem is not properly posed if we expect an up-draught from an 
insulated lower disk to take place with convection domination. 

E,j = )aF,o(Q+ex~(-Q)cos5k)+bi, 

5.4. The Jirst-order terms 

As we noted in $5.2 the precise value of r now begins to affect the expansions by 
determining the order of the I $ ,  etc., in the asymptotic series. An examination of 
the equations (5.11)-(5.13) shows that the value T = 2, i.e. 8, = ,8, separates 
two types of solutions in the first-order terms. 
If T > 2, the first-order terms are generated by the non-linear inertia and 

convection terms throughout the field of flow. It seems reasonable, then, to 
assume that all the I , ,  m,, etc, are simply B. Thus the first-order equations with 
the simplest zero-order solutions substituted are 

(5.29) 

(5.30) 
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2q, ,  = 0, %l = 0, 1 (5*31) 

a(-aF;l+~Wt,l,aeXP(-Ba&)) = q 1 ,  - a m , ,  = HZ,,, 

(5.32) 

(5.33) 

The last two equations of (5.32) have, of course, been solved in $5.3. Once 
again two arbitrary constants appear in the temperature solutions in the lower 
thermal and Ekman layers, and they are determined in a like manner to a, and 
a2 by resort to the coefficients of pz in Fe and He. The matching solutions are 
obtained in a straightforward manner: 

VE, , = 25 + &,a( 1 - exp CE cos &) + &ij exp &( 51;E sin Q - 2 exp Q - sin CE) , 

i 
2v;,ov,,+.Ft;,o w&+2v;,, = +w:y,, 
- W ~ , o v e , o + W , , o v ~ , o - W ~ , , =  K,1, 

0 = H:,,. -+CTW;,, = F;,,, 
The boundary conditions are similar to (5.21) and (5.22) except that 

Fe,, = 0. 

VF,, = &,a+&, v, = gJ,a-l)+&(y-,a), q,, = &(+-n), 

V,  1 = % -&41 -exp ( - 5,) cos Ce) 

+ &j exp ( - Q) (5Ce sin Q - 2 exp ( - Q) - 20 cos Q + sin Ce), 

+ &ij exp & {cos CE + 6 sin 5' - exp CE - 5!&(cos 5' + sin CE)} ,  
WE, , = - &.a{ 1 - exp CE( cos CE - sin CE)}  

JET,, = -&,a, w, = g( l -&a-y) ,  Iql = A ( 2 - g ) .  

=-A 16 a(1- exp( - Q) (cog Q + sin Ce)} + i w e, 1 

+ & exp ( - Ce) {exp ( - Ce) - 21 cos ce - 14 sin Ce - 5Ce(c0s Ce - sin Ce)}, 
F', , = $.a( 1 - exp CE cos &), FF, , = &,a, Fl = +<+$a-g, 

E;,, = )a - 'i + exp ( - tm {a - - 2 z d x 2  - a)}, 
= & ( Q + e x ~  ( -Q)~osCe) - i ( l+@>,  

HE,,= HT,,  = Hl = E&l = He,, = 0. 

If 7 < 2, only the convection terms outside the Ekman layers, and the geo- 
strophic balance in the thermal layers, can generate first-order terms. All the 
I,, etc., must be equal to ,Llh and the first-order equations are 

- %c,l = G,,, 

WT,, = 0, 

w; = 0, 

q,, = 0, 

- K,l = v:,,, 

1 wiv 

0 = F&,l, 
2 G , l  = 2 E,1, 

2vh, l  = 1, 

0 = H'&, 

- tgF&,, = B';,,, - ~ G H T , ~  = H&,1: 
2V71 = F,, 

FI = 0, - $ v H ~  = 2, 

2 Vi, = 1 - + exp ( - $act), 

2v;,, = $W&, 
.a(-*ql+K,lF;,o) = F:,l, - BUH;,, = H';,,, 

0 = F:,,, 0 = H:,l, 
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with the boundary conditions as in (5.33). This is the first occasion on which H 
has a non-zero component, and, in fact, the coefficients of pi7 are the first possible 
values of H ,  whatever the value of T, because H must be generated by F .  The 
arbitrary constants which appear in the temperature components are this time 
found by the coefficients of p1f3' in and He. 

The solutions are 

= - +rl( 1 - exp CE cos &), VT,l = - +rl+ +CF, V, = - &a-1. 

5, = - &rl + $& + ~ - - l  exp ( - &u&), 

v Q, 1 = -&-1(l- ~ X P  ( - Ce) cos Ce) ,  

W*,l = w1 = q,l = gU-1, 

K, 1 = +~- ' (1 -  exp ( - Q )  ( ~ 0 s  Ce + sin Ye)}, 

F',l = F',l = pl = 0, Fl,l = -&deXp( -&4) ,  &,l = 0, 

WE> = &~-1(1-  exp &(COS CE - sin &)I, 

HE,l = = 0, = S( l -c ) / (~ ,  I&= He,l = S/G. 

Since the equations for the first-order variables are always linear, if T = 2, 
then the resulting solutions will simply be the sum of the two sets of solutions 
for T > 2 and T < 2, and will be the coefficients of B. 

6. Convection domination with a temperature maximum 
6.1. The singular regions 

In  this section the situation which was described in 53.4 is considered. Thus we 
redefine the temperature scale by (3.15) and use the boundary conditions (3.16) 
on[= 1. 

A similar analysis to that of $5.1 confirms the predictions of $3.4 and deter- 
mines the relevant equations of motion in the different regions of flow. In  terms 
of h and b the thermal layer is of thickness 8& = At  = piT, which is also the order 
of magnitude of the zonal velocity. The unit-order variables are defined by 

7 = flbv, == p1+%7W, F = F ,  B = H ,  

and the core equations become 

Bl+i7( 2 V V' + @2+7 W wN') + 2@7 V' = F + +/33+& wv 

" (6.1) 
p + a q  - W"v + WV')  - W' = pl+t 'v ,  

J (T( - W'P+ WF')  = p w ' ,  
uWH' = piT(2F+ H"). 

The thermal layer co-ordinates are now = [//3i7 and CT = (C- l)/p"' to give 
the equations 

1 2+hq W;(l) + 2 V; = + &33+9'WfV,-. p 1 + q  2K v; + 2p 

p1+q - w;q+ q q) - T q  = p'+a'v;, 
(6.2) (T( - yl$ + %Pi) = P:, 

uFH; = 2/?4'.4 + HT. 
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Finally, the Ekman layers have again the co-ordinates Q = c/pl+iT and 
cE = (5- 1 ) p + 4 7  with the equations 

iwiv * 

(6.3) I p1+q 2E v; + gw, w:) + 2 v; = p 1 + q  + z 

p+q - w; ve + w, v;) - w; = v;, 
up+&7( - w;I$ + w,FL) = Pi ,  

e , 

c~/?1+47% Hi = 2/3'+'& + H i .  

I= 0 

FIGURE 6. Domains of validity for a temperature maximum. 

t" 

M + 2 N =  2 

M 

M + 2 N = 0  f M+2N=4 1 

FIGURE 7. Domains of validity for a temperature maximum. The domains are repre- 
sented by the type of shading: vertical, (6.1) valid; sloping, (6.2) valid; horizontal, (6.3) 
valid. 

Figures 6 and 7 show the domains of validity of these three sets of equations. 
Since the equations for the thermal layers are valid in the core, only the equations 
(6.2) and (6.3) would be required in the situation of one disk in a semi-infinite 
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fluid. The presence of the other disk, however, means that the core equations 
(6.1) are necessary in order to link the two strained co-ordinate systems near 
g =  Oand<=  1. 

In  figure 7 we can see that, as r varies, the critical lines always pass through one 
of the points (0, 0) ,  (0, g), and (1, i). Thus, in contrast to $5.1, as 7 tends to either 
zero or infinity the matching process is unaffected, for in either limit the domain 
of validity of (6.2) overlaps the domains of (6.1) and (6.3). The former limit implies 
that h is of order unity, and thus the thermal layer covers the field of flow. But 
we observed in the last paragraph that the equations of the thermal layer are 
valid in the core, and hence this limit does not change the structure of the three 
regions. The other limit implies that p is of order unity. An examination of equa- 
tions (6.1)-(6.3), however, shows that, since the velocity scales depend on A, 
the thermal Rossby number p is not the true Rossby number of the motion; 
the ratio of inertia to Coriolis terms is everywhere of order P1+tT = phi. Thus the 
analysis holds if it is only the parameter E which is small. 

Let the solutions be expressed as the asymptotic series (5.14). 

6.2. The solutions 

The zero-order equations are 

with the boundery conditions from (3.6), (3.7), (3.16) and (3.17), 

at (;E = 0, WE,, = Wi,o  = VE,, = 0, FE,o = - 1, HE,o = 0, (6.9) 

at Q = 0, Wi,, = K',o = x,, = q,o = 0, He,, = h,. (6.10) 

An immediate deduction from these equations is that the vertical velocity must 
be positive for, as we haveseen, a down-draught carries the non-uniform tempera- 
ture on the upper disk into the core, where (6.6) shows that the fluid must be 
homogeneous. 

As they stand, the equations do not have a solution, for the form of V, in the 
core is not specified. This, by (6.1), is determined by coefficients of p"', but it is 
a simple matter to show that below the upper thermal layer, to this order, the 
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radial component of the temperature field vanishes. The zero-order velocity in 
the core is therefore constant as we had expected in $3.4 and the solutions are 
easily obtained: 

v ~ ,  = - 1 - exp cE cos cE), 
V T,O - - Za 1 -4 - a 4  exp (&rCT), 

J7-v - 1  -; 
0 -  t , 0 - - 2 a  7 

T$o = &a"( 1 - exp ( - Q) cos Q) ; 

w ~ , ~  = &r-+{1- exp &(cos cE - sin &I}, 

w, = &a-s{ 1 - exp ( - 5,) (cos ce + sin Q)}; 
WT,, = w, = K,, = *r-*, 

= - '7 'T,O = -exp (&&cT), 
Fo = q,o = q,, = 0; 

H E , ,  = 0, HT,, = h,(l-exP(&&!X, 
H, = Q,, = He,o = h,. 

Thus below the upper thermal layer the fluid is at  a uniform temperature 
h, to a first approximation. An examination of the next and higher-order terms 
in the energy equations in those lower regions shows that this must be true to 
all orders. Thus we can safely omit all the temperature terms in the core and 
lower Ekman layers. 

The first-order terms in V ,  W ,  and P are clearly generated by the non-linear 
inertia and convection terms of the Ekman and thermal layers and are coefficients 
of /P+f7.  But the equations (6.2) indicate that there is a coefficient of p4T in H, 
generated by Po, in the thermal layer. Thus 7 = 4 separates two different types 
of first-order solution, and this value, as in $5.4, corresponds to a thermal layer 
of thickness 8; = p. 

If T > 4, all the 11, etc., are equal to ,P+f7 to  give the equations 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 
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Actually, the equation for V,, (6.13), has been obtained from coefficients of 
p%'. 

The boundary conditions are: 

at CE = 0, WE,1 = W&,1 = V',1 = FE,1 = HE,1 = 0 ;  

at ce = 0, w,, = W& = E,l = 0 ;  

and in addition, as cT + - 00, FT,l, HT,i -+ 0. 
A routine calculation yields the solutions: 

v -11_,-1-1-1< 

exp C E } ,  
vT,l = exp(+&CT){jr l+ (<T/&) (ta-g)}-g,-lexp(2/O.~T) +2+-'-$, 

V e, 1 =1g-1-- 4 0 1 + exp ( - 6) {&,-'( 55, + 1) sin ce - (ia-1- a) cos Q 

E,1 - 40 4 2 E  

-+ exp cE {&r~-1(5C~ - 1) sin Q - i(3g-l- 2) cos CE - 

v, = q,l = hg-1-1 47 

- exp ( - Q)}; 

WE,1 = -3(3/g-2) 
+ e x p ~ E { ( ~ ~ - ' - a - g a - l ~ ~ ) ~ ~ ~ ~ E -  (&cT-'-~ 4 

+ Bg-1 cE) sin cE - &+ exp &), 

WT, = &( 1 - g-l) exp ($4~ &) + I( 4a-l- 1 ), 

W - L g - l - i +  

w1 = w,l = g,-1--$, 
exp ( - 6) { (1 - -3-g-1- 2. 8 g-' [e) cos & + (& + &g-' 

4 2 0  e.1 - 8 
+ Ba-' Q) sin Q + &+ exp ( - Q)} ; 

FE,1 = 41ia(1-~E;Eexp~ECoS~E), 

FT,I = {(ag-$) CT + 4dg)exp (& JgCT); 

HE.1 = -&hO&cE, 

HT,l = hoexp(&&~T){&2/g(1-a-l)-&(&,-l- l)cT 
- i &( 1 - g-1) exp (i ,/crCT)). 

If we now assume that T < 4, and that all the I , ,  etc., are /3qT we see from equa- 
tions (6.1)-(6.3) that all the first-order terms in V ,  W and F are zero. Thus there 
are only two relevant equations 

0 = H&,l, 

gWT,oHh,l = 2%,o+H;:,, 

with the boundary conditions given by (6.16). 1-ntegrating and matching the 
equations we have 

Hi1 = O ,  HT, 1 = 4f;T exp (4 & CT) * 
As in $6.4, since the equations for the first-order variables are linear it follows 

that, when T = 4, the solutions are obtained by adding the solutions for r > 4 
and for T < 4. 
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